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Abstract. In this paper we discuss the supersymmetric tachyon and its applications. Both 
unitary and non-unitary representations for the superalgebra are examined. I f  we abandon 
the standpoint that any elementary particle in relativistic quantum theory must be described 
by unitary irreducible representations of the Poincare algebra or the superalgebra, then 
we can construct the supersymmetric invariant action for supersymmetric tachyons. The 
scalar neutrino’s mass is lighter than the photino’s mass if the neutrino is the tachyon and 
the photon is a massless particle in the simplest supersymmetry-breaking model. There is 
a possibility that the cold dark matter consists of scalar neutrinos. 

1. Introduction 

The idea that tachyons might exist has attracted some attention in the literature over 
the past two decades (cf, e.g., Recami 1978). However, most work to date (Arons and 
Suadshan 1968, Dhar and Suadshan 1968, Feinberg 1967, 1978) has been concerned 
with scalar tachyons. Chodos et al (1985) suggested that at least one of the known 
neutrinos might possibly be a fermionic tachyon and examined the available data on 
the neutrino mass from pion decay 7 r + + w + v  from this viewpoint. van Dam et al 
(1985) pointed out that this suggestion cannot be realised in the framework of field 
theory. However, their conclusion is based on the unitarity restriction: any elementary 
particle in relativistic quantum theory must be described by unitary irreducible rep- 
resentations of Poincark algebra or its supersymmetric generalisation. 

In this paper we discuss the supersymmetric tachyon and its applications and 
examine both unitary and non-unitary representations of the N = 1 superalgebra. We 
extend Wigner’s work (1963) on the wave equation to the supersymmetry case by using 
a formalism developed by Dirac (1963) and others. If we accept the standpoint of the 
unitary restriction, then we can conclude that even though a chiral or a gauge super- 
multipet can be written easily for imaginary mass particles, such a supermultiplet does 
not describe the tachyonic one. On the other hand, if we abandon the unitary restriction, 
then we can construct a supersymmetric action for supersymmetric tachyons. A realistic 
particle spectrum demands the breaking of supersymmetry. It is reasonable that the 
mass of the scalar neutrino is less than that of the photino if the neutrino is the tachyon 
and the photon is a massless particle. We explore the possibility that the scalar neutrino 
is the lightest supersymmetry partner. This assumption implies m;d 2 GeV if P ; , ~ -  
3H/87rG.  
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2. Unitary representation 

There are fourteen generators in the N = 1 superalgebra, namely, four generators of 
the translation P,, six generators of the Lorentz translation MFY and four spinoral 
generators Qa, which satisfy the Majorana condition Qo = c a b ( G T ) b .  The algebra is 
given by 

where a,. = $[ y,, yy], C = iy2yo and y, are the usual Dirac matrices which are taken 
as follows: 

Y o = [ I  0 1  0] Yl=[;, -;‘I ?= [  1 0  3. 
0 -1 

The Casimir operators of the superalgebra are P 2  and C,,CWY: 

C,“ = ( w, +aQr,r5Q)~Y - ( W” +aQr”r’Q)P, (3 )  
where W, is the Pauli-Lubanski vector. The irreducible representations may be labelled 
by the eigenvalues of these Casimir operators. 

The Majorana condition is 

(01, 92, Q3, Q 4 ) T = ( Q 1 9  9 2 ,  QT,-Q?)’.  (4) 
Consider any irreducible representation Ip) of the superalgebra. There will be a 

state la) = Q,Q2)p) satisfying Qlla)  = Q21a) = 0; namely, la) is a Clifford vacuum. 
Next, we consider a Hilbert space H of complex-valued functions a(p ,  tI , t2) for 

the Clifford vacuum, where tI and t2 are harmonic oscillator coordinates. In this 
Hilbert space, a unitary representation is supported via 

This representation may be reduced by imposing covariant constraints: 
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where 
v - d  V, = +( 6: + Tr: + & + 7 2 )  

v2 = f(t, .rr2 + 5 2 r 1 )  

[!$,, 6 k l  = [T,, rkl = [&,, rk1 = is,, j ,  k = 1,2.  (8) 
In the case of m 2  < 0, we may take p p  = (0, 0, 0, m )  as the frame and P”V, is 

1 - 2 ( 5 2 T r z - & T 1 )  
( 7 )  v 3 -1 - 4cs:- d+ 6;  - d) 

and T k  is the conjugated momentum of &, 

reduced to 

P V, = $ 1  m I ( ~ r ;  + 7:  - 6: - s:).  ( 9 )  

The little group is spanned by SI*, SI, and SzO. Its generators commute with V3 which 
may be used to reduce this representation. From (9) and (6), we find that w can have 
any real eigenvalue and  it is related to the w vector by 

(10) =I) 12 - w z  4 m  

For a fixed w there is a further reduction which can be seen easily after diagonalising 
S12, the helicity operator for the frame p v  = (0, 0, 0, Iml). The other generators of the 
little group, S,, and Szo, raise or lower this helicity by units of +1. Hence for any 
fixed w, there are two irreducible representations under PoincarC algebra: one contains 
all the half-integer helicity states and the other contains all the integer ones. The 
operator w is Hermitian, so the eigenvalues of w 2  are non-negative. Since [S,* ,  Qf] = 
-fQT and [S12,  QT] = we have irreducible representations of the superalgebra 
( la) ,  @la) ,  (??/a), QTQTIa)), which carry a fourfold infinite number of linearly 
independent helicity states for a given 4-momentum. 

In the case of m 2  = 0, we may taken p w  = ( E ,  0, 0, E )  as a typical frame and have 

P”V,=E(V,-V, )=~E( . r r f+ . r r : ) .  ( 1 1 )  
The little group is spanned by SI? and two ‘translations’, SIO-Sl3 and S20-S23.  These 
two ‘translations’ commute with V,-V, which may be used to label the irreducible 
representations. Substituting ( 1  1) in (61, we obtain 

w = ; E (  x ; +  72) = E. (12) 

= can be any non-negative. 
For a fixed E there is a further reduction of the representation. We consider that 

the helicity operator S12 for p G  = ( E ,  0, 0, E )  does not change the quantum number of 
the degenerate oscillators. The operators Slo-Sl, and Slo-S23 change the helicity by 
+ l .  Thus, for a given E there are two irreducible representations under the PoincarC 
superalgebra: one contains all the half-integer states and  the other contains all the 
integer ones. Since [ S12 ,  QT] = iQ7,  we have another reducible representation of the 
superalgebra (QTia), la ) )  which carries a twofold infinite number of linearly indepen- 
dent helicity states. For E = 0 there is a further decoupling so that the representation 
is reduced to the usual supersymmetry multiplet with spins ( j , j - $ ) ,  

In N = 1 supersymmetry theory, the familiar supermultiplets include a chiral doublet 
($,O), a gauge doublet (1, f )  and a graviton-gravitino doublet (2, i). However, the E = 0 
massless irreducible representations which correspond to tachyonic supermultiplets 
carry an  infinite number of linearly independent helicity states for any given 4- 
momentum vector p G .  Thus they do  not fit any familiar supermultiplet having a finite 
number of independent components for a fixed p , .  

c 
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Many theoretical works are based on the simple restriction that any elementary 
particle in relativistic quantum theory must be described by a unitary representation 
of the PoincarC algebra or superalgebra. If we accept this standpoint, then we may 
conclude that, although a chiral or a gauge supermultiplet can be written easily for 
an  imaginary mass, such a supermultiplet does not describe tachyons. 

3. Non-unitary representation 

The three-parameter Lie algebras have, as their complex extensions, isomorphic simple 
complex algebras A,  - B, - C , .  The real forms of these algebras may be divided into 
three compact isomorphic Lie algebras so(3) - su(2) - sp(2) and four non-compact 
isomorphic Lie algebras s o ( 2 , l )  - so(1, 1) - sl(2, R )  - sp(2, R ) .  In addition, we can 
consider a three-parameter Euclidean algebra in two dimensions E 2 ,  comprised of the 
semidirect sum E 2 -  T 2 0 s 0 ( 2 )  where T2 is the translation in the two dimensions. 

Barut (1967) has shown that the construction of the representations of the eight 
algebras mentioned above may be given a unified treatment. If the generators of the 
Lie algebras are written as 

= -'Jt i , j  = 1 ,2 ,3  (13) 

S, = (S13+iS2,)/d'2 (14) 

and  we define 

then the commutation relations become 

IS+,  s-I = g,,s,* [SI*, S*l= +S* (15) 
where g,, = 1 for so(3) - 4 2 )  - sp(2), g37 = -1 for so(2, 1) - su(1, 1) - sl(2, R )  - 
sp(2, R )  and g,, = 0 for E * .  For any unitary representation we must have S ;  = S,J and 
S S  = S-.  If we put 

SI, = fu, S, =:&(U, + iuz) (16) 
then we obtain the elementary representations for the three classes of Lie algebra. For 
g,, = 1 we obtain the elementary representation for so(3) - su(2) - sp(2),  which is 
unitary and  irreducible, while for the g,, = -1 we get the elementary representations 
for so(2, 1) - su(1, 1) - sI(2, R )  - sp(2, R ) ,  which are irreducible but non-unitary. The 
highest weight of this spinor representation is f. The eigenvalue of the Casimir invariant 
C 2  = g,,S12( S12 + 1) + 2 K S +  is readily found to be 

(17) 
Next we show that the non-unitary representation of the superalgebra accords with 

the method mentioned above. 
Haag et a1 (1975) proved that the superalgebra (and its extensions with central 

charges) is the only graded Lie algebra of symmetries of the S matrix which is consistent 
with relativistic quantum field theory. The extended superalgebra can be written as 

c2=' 
483, .  

{ Q u A ,  O p B ) = 2 u : p P m a A B  

{QaA, Q D B > = < O u A ,  Q p B } = O  

LPm, Q ~ " l = [ ~ m ,  Q u A I = O  

[ P m ,  P n I = O  

(18) 
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where the indices ( a ,  p, . . . , ci, p, . . .) run from 1 to 2 and denote two-component Weyl 
spinors. The indices ( m ,  n, . . .) identify Lorentz indices. The indices (A, B, . . .) refer 
to an internal space and run from 1 to N. The algebra with N = 1 is called the 
superalgebra, while those with N > 1 are called extended superalgebras. 

In the case of m2 <O, we have taken p ”  = (0, 0, 0, Iml) as a typical frame, and the 
superalgebra reduces to 

{QaA, Q ~ B I  =21m((-1)”SabaAB. (19) 

The generators Q may be rescaled 

so as to show that (19) is the algebra of 2 N  fermionic creation and annihilation 
operators, (beA)’  and boA, 

The representations of this algebra are well known. They are constructed from a 
Clifford vacuum (a). The Clifford vacuum is defined through the condition 

b,*la) = 0. (22) 

1.2,’ ” 1 .  . . 2;,)= ( n ! ) - ” ’ ( b U l A l ) .  . . (b,,,A*l)la). (23) 

The states are built by applying the creation operators (bWA) ’  to /a) 

Because of the anticommuteness of ( b a A ) ’ ,  la“) is antisymmetric under the exchange 
of two pairs of indices a,A,, aJAJ. Each pair of indices takes 2 N  different values, so 
n must be less than or equal to 2N.  For any given n, there are (2:) different states. 

In the Weyl basis of Dirac matrices, the Majorana spinors contain only one Weyl 
spinor 

Q; = ( a.A). QmA 

For the superalgebra there are two Casimir operators, P 2  and C‘, where 

The irreducible represnetations may be labelled by the eigenvalues of the Casimir 
operators, so we seek these eigenvalues of C‘. In a typical frame P” = (0, O,O, m ) ,  C’ 
becomes 

c2 = 21m/’wkwh 
(26) 

w k  = i E k v A p  M ”’P” +: Q.btAYhY - k = 0 ,  1,2 

where wk is called the w spin and satisfies the following commutation relations: 

[q, w l ]  = iw’ 

[wk, Qt1= [wk,  Q U A I  = 0. 

[ w , ,  w 2 ]  = -iwo [ w 2 ,  wO]  = iw ,  
(27) 
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Now w k w k  is a Casimir operator and wk satisfies the commutation relation of 
su( 1 , l ) .  The eigenvalues of w 2  will therefore have the form -j( j + l ) ,  where j is integer 
or half-integer. The irreducible non-unitary representations of the superalgebra may 
then be labelled by the eigenvalues of P 2  and w 2 .  

When the Clifford vacuum [a,) has spin j (j > 0), it belongs to a (2j  + 1)-dimensional 
non-unitary representation of the little group su(1, 1). So the dimension of the rep- 
resentation of the superalgebra is d = 22N(2 j+  1). 

The results are summarised in table 1 for the cases of N = 1, 2, 3 and 4. 
In fact, there does not as yet exist a completely satisfactory quantum field theory 

for any type of tachyons (Kamoi and Kamefuchi 1971). Chodos er al(1935) suggested 
that such difficulties cannot be used to exclude a priori the existence of [achyons and 
more theoretical work is required to determine physically acceptable modifications of 
the usual non-tachyonic quantum field theory. 

If we abandon the unitary principle, then we can construct a tachyonic supersym- 
metry action. 

Table 1. N ss 4 non-unitary tachyonic representation. 

Spin 

I 3 N Vacuum 0 I 1 2 2 

2 1 0 
1 2 1 
0 1 2 
0 0 0 
5 4 1 
4 6 4 
1 4 6 

14 14 6 
14 20 15 

1 

2 

4 1%) 42 48 21 

0 0 
0 0 
1 0 
2 1 
0 0 
1 0 
4 1 
1 0 
6 1 
8 1 

4. Supersymmetric tachyons and their applications 

It is convenient to describe the fermions in the chiral supermultiplets by using the 
left-handed Weyl field. A Dirac particle then gets counted twice; once for its left-handed 
particle state and once for its left-handed antiparticle state. Let anticommuting para- 
meters to, c& satisfy 

{ [ " , p } = { [ m ,  Q p } = . . . = [ P m , [ a ] = O .  (28) 

The component multiplet with supersymmetry transformation is as follows: 
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These fields can form a linear representation of the N = 1 superalgebra. If A has 
dimension 1, then $ has dimension while F, which is the auxiliary field, has dimension 
2. The invariant actions are given by 

2 =id,&"$ + A*OA + F * F  - m(i&&-i$$ + AF - A*F*)  (30) 

Lf'=ia, i@"$+A*CIA+F*F-m(i$$+i&&-AF-A*F*).  (31) 

or 

There is an important difference between 2 and 2'. Equation (30) describes a 
normal chiral supermultiplet, while (31) describes a tachyonic one. Because of the 
little group for spacelike momenta is non-compact and its unitary representations are 
therefore infinite dimensional, the Fock space of the theory given by (31) involves a 
non-unitary representation. 

If the neutrino is a spinorial tachyon (Chodos et a1 1985) then its supersymmetric 
partner, the scalar neutrino, will also be a tachyon since unbroken supersymmetry 
implies mass degeneracy between bosons and fermions belonging to the same super- 
multiplet. The scalar neutrino can be a normal particle if the supersymmetry breaking 
has occurred. The most elegant and plausible mechanism for supersymmetry breaking 
is a spontaneous-breaking one, as in the case of gauge theories. Spontaneous global 
supersymmetry breaking requires a vacuum that is not supersymmetric. In this case, 
there must be some state fi (called the goldstino). It couples to the vacuum via a 
supersymmetry charge Q whose element is 

( o ~ Q ~ C )  = m: z 0 (32) 

where the parameter m characterises the scale of supersymmetry breaking. From the 
superalgebra and translation invariance of the vacuum we infer 

(oIP,~o) = m: = 0. (33) 

There will be global supersymmetry breaking if, and only if, the vacuum energy does 
not vanish. 

The elements of superspace are denoted as z = (x, 8, 8).  The chiral superfields are 
defined 

0, = A, ( X )  + i eu"ea,A( x)  + i ee@U A, ( x) 

+ JZe+,(x)  - (i/fi)eea,$,(x)d'"+ eeF(x) .  (34) 

The simplest model (Farrar and Fayet 1978a, b) has three gauge-singlet chiral 

(35) 

If we are restricted in a weak-coupling model, then the following 'low-energy theorem' 
holds 

A m 2 =  g,M,' (36) 
where g,  is the coupling constant of the ith multiplet of the goldstino. The mass of 
the scalar neutrino and the photino are m; and m i ,  respectively, and are given by 

superfields 41, &, 43 and the superpotential is 

P = A14:4z+ A2(df - )(*I&. 
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The mass of the scalar neutrino is lighter than that of the photino, from (37), if neutrinos 
are tachyons and the photon is a massless particle in the simplest model (8 ,  = g 2 ) .  The 
lightest supersymmetric partner particle is stable because of R parity (Farrar and Fayet 
1978a, b, Farrar and Weinberg 1983), a reflection symmetry equivalent to 

R = ( - 1 ) 3 ( B - L l ( - 1 ) F  (38) 

where B, L and F are baryon, lepton and fermion numbers respectively. R parity is 
therefore an exact symmetry in any theory in which ( B - L )  and F are conserved. In 
other supersymmetric theories, the lightest supersymmetric partner is almost the photino 
of mass mp 3 GeV. This lower limit corresponds to the cosmological critical density 
and is dependent on the theoretical parameters controlling the photino's mass iind its 
interactions (Goldberg 1983). In the scalar neutrino case, the difference from the 
photino as the lightest supersymmetric partner is that the scalar neutrino annihilation 
rate can be much larger (Barnett e? al 1983), so there is no lower limit on the scalar 
neutrino mass from the cosmological density. However, the assumption that the scalar 
neutrino is the lightest supersymmetry partner implies that m; < 2 GeV if p;,o - 
3Hi/8.rrG. If we require p";p;, then m c s 2 G e V ;  or if pp-O.lp;, then m ; s  1 GeV. 

There is a possibility that the cold dark matter ( M , <  108MMo) consists of scalar 
neutrinos. It has been shown (Blumenthal er a1 1984) that good agreement with the 
galaxy and cluster data is obtained in the cold dark matter model for a Zeldovich 
spectrum of primordial fluctuations. The model also appears to be reasonably consistent 
with the observed large-scale clustering, including superclusters and voids. 
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